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Abstract. Katabatic flows over high-latitude long glaciers experience the Coriolis force. A sloped 
atmospheric boundary-layer (ABL) flow is addressed which partly diffuses upwards, and hence, 
becomes progressively less local. We present the analytical and numerical solutions for (U, V, θ) 
depending on (z, t) in the katabatic flow, where U and V are the downslope and cross-slope wind 
components and θ is the potential temperature perturbation. A Prandtl model that accounts for the 
Coriolis effect, via f, does not approach a steady state, because V diffuses upwards in time; the rest, i.e. 
(U, θ), are similar to that in the classic Prandtl model. The V component behaves in a similar manner 
as the solution to the 1st Stokes (but inhomogeneous) problem. A WKB† approach to the problem of 
the sloped ABL winds is outlined in the light of a modified Ekman-Prandtl model with gradually 
varying eddy diffusivity K(z). Ideas for parameterizing these high-latitude persistent flows in climate 
models are revealed. 
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1. Introduction 

Katabatic flows are regular features of the stable atmospheric boundary layer (ABL) over inclined 
radiatively cooled surfaces. The ubiquitous nature of katabatic flows over e.g. Antarctica and 
Greenland, not to mention smaller areas such as Iceland, and their cumulative effects, implies that the 
katabatic wind contributes to the general circulation (Parish and Bromwich, 1991). Moreover, as 
katabatic flows may impinge on various coasts (Parmhed et al., 2004; Renfrew and Anderson, 2006; 
Söderberg and Parmhed, 2006), they may interact with sea ice and coastal ocean areas. It has been 
considered that katabatic flows might affect the thermohaline circulation and water mass conversions 
through the formation of coastal polynyas and the associated strong air–sea interaction (e.g. Gordon 
and Comiso, 1988). 

The detailed structure of katabatic flow still remains an important modelling issue (e.g. Weng and 
Taylor, 2003). The stably stratified boundary layer is usually poorly resolved in many numerical 
models (e.g. Zilitinkevich et al., 2006), i.e. the modelling of katabatic flows is reasonably successful 
only if a sufficient vertical resolution is used (e.g. Renfrew, 2004). A simple model of katabatic flows 
represents a balance between the negative buoyancy production due to the surface potential 
temperature deficit and dissipation by turbulent fluxes (e.g. Mahrt, 1982; Egger, 1990). On long 
glaciers in higher latitudes the Coriolis force also becomes an important contributor to the katabatic 
flow balance, deflecting the downslope component and leading to the occurrence of a wind component 
directed across the slope (Denby, 1999; Van den Broeke et al., 2002). Stiperski et al. (2007) extended 
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the Prandtl model by including the Coriolis force in order to be able to cover long polar slopes and the 
corresponding long-lived strongly stable ABL. 

Furthermore, the pure katabatic flow is characterized by a pronounced low-level jet (LLJ) and 
sharp near-surface vertical temperature gradient (e.g. King et al., 2001; Grisogono and Oerlemans, 
2001a, 2001b; Van den Broeke et al., 2002). Renfrew (2004) and Renfrew and Anderson (2006) show 
that significant katabatic flows over Antarctica most often exhibit clearly their LLJ and an 
anticlockwise backing of the wind with height. The authors suggest that this is due to a decrease in 
frictional forcing with height through the ABL. Moreover, Renfrew and Anderson (2006) indicate 
which kind of problems the measurements of katabatic flows may have, e.g. capturing the height of 
the LLJ that may exist just above a meteorological mast but still below the lowest sodar level. These 
authors illustrate that even a fine-scale nonhydrostatic numerical weather prediction (NWP) model 
encounters problems in modelling these widespread flows (to capture the jet-shaped shallow flow a 
model set-up with high vertical resolution is required), not to mention typical course-grid climate 
models. Therefore, katabatic flows typically have to be parameterized in large-scale models (e.g. 
Zilitinkevich et al., 2006), and to this end we further develop the Prandtl model with the Coriolis effect 
and variable eddy diffusivity.  

King et al. (2001) show how sensitive the modelled Antarctic climate is to modifications of ABL 
parameterizations. Ever increasing resolution of the NWP and various regional models calls for 
continuous and necessary improvements of current parameterizations (e.g. various corrections to the 
Monin-Obukhov length). There is hardly any horizontal surface over land where the NWP model grid 
spacing falls below several km; in fact, slopes are typically between 0.5° and 10° to 20°. The surface 
slope, aside from violating horizontal homogeneity assumption, affects also Monin-Obukhov (MO) 
scaling as such: MO theory considers only the vertical component of the buoyancy (e.g. Munro and 
Davies, 1978), neglecting its role as the driving force for katabatic flow in the horizontal momentum 
equation. In this study we revoke a known suggestion that an additional alternative for surface-layer 
scaling may be invoked – that from the Prandtl model relating to the LLJ height (Munro, 1989, 2004; 
Grisogono and Oerlemans, 2001a, 2001b).  

We continue the work of Grisogono and Oerlemans (2001a, 2001b) by introducing a gradually 
varying eddy diffusivity in the analytical model given in Stiperski et al. (2007). The new approximate 
(and possibly asymptotic) solutions for katabatic boundary-layer flows, obtained by using e.g. the 
WKB method, may be useful in explaining various measurements (e.g. over the Antarctic), and to lend 
credibility for a more faithful parameterization of katabatic flows in meteorological and climate 
models. The paper is organized as follows. In Section 2 we present the main findings of Stiperski et al. 
(2007) as a starting point for introducing the varying eddy diffusivity. In Section 3 numerical solutions 
and approximate WKB solutions are presented. The conclusions are given in Section 4. 

 

2. Rotating Prandtl model and solutions for constant eddy diffusivity 

The rotating Prandtl model describes a hydrostatic, one-dimensional Boussinesq flow with the effects 
of the Coriolis force included. As in the classical Prandtl model (Mahrt, 1982; Egger, 1990; Parmhed 
et al., 2004), the K-theory is invoked to model the turbulent fluxes. The governing equations of the 
rotating model are thoroughly derived in Stiperski et al. (2007) under the assumption of a constant 
eddy thermal diffusivity Kc and a constant turbulent Prandtl number Pr. In the case of non-constant K, 
the equations for the downslope and cross-slope components of the wind vector (U, V), the potential 
temperature perturbation θ  (total minus the background prescribed potential temperature) and the 
corresponding boundary conditions are: 
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Here the z axis is not vertical but perpendicular to the surface (x axis) sloped with the negative 

(clockwise) angle α from the horizontal. The symbols have their usual meaning: θ0 is a reference 
potential temperature, f is the Coriolis parameter, g is acceleration due to gravity and C < 0 is the 
constant surface-potential-temperature deficit, applied to an undisturbed atmosphere-surface interface 
instantaneously at the time t = 0. Slope angle α, for which the katabatic wind is successfully treated by 
the model, typically does not exceed 10°, therefore giving a reasonable assumption of using the 
constant gradient of the background potential temperature γ  in the true vertical (Eq. 3). More about 
the model derivation can be found in e.g. Denby (1999). 

Equations (1) through (5) can be used to describe the “primarily katabatic driven” flow, as selected 
by the criteria described in Renfrew and Anderson (2002). That is, such flows develop in the stable 
ABL where the surface radiation balance is a net cooling to space and the mesoscale pressure gradient 
is small, so that the influence from larger-scale weather systems is reduced. Such “typical” katabatic 
flow is shallow, with winds aloft decaying with height and rather weak compared to near-surface 
winds (Renfrew and Anderson, 2006). 

Before attempting to derive the analytical solutions for U, V and θ let us briefly revisit the main 
conclusions of Stiperski et al. (2007) for the case of K(z) = Kc, as they represent the starting point of 
discussion for the more general case of varying K. 

 
• The approximate solutions for the steady-state potential temperature perturbation and down-

slope velocity component (θs and Us) are analogous to the classical Prandtl model: 
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 where /σhp 2=  is the Prandtl layer height,  
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 and N is the buoyancy (Brunt-Vaisala) frequency, satisfying N2 = γ g/θ0. In (6) and (7) θs and 

 Us are the solutions of the 6th-order partial differential equation for each of the unknowns 
 represented by the flow vector F = (θ, U, V): 
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 Numerical solutions for U and θ  asymptotically approach their steady state values Us and θs 

 after the characteristic time scale for the katabatic flow T = 2π/(N sin(α)) (Mahrt, 1982; 
 Grisogono, 2003).  

 
• Numerical solution for the cross-slope velocity component does not reach the steady state, but 

diffuses upwards through a several hundred m thick layer. However, the scale analysis carried 
out in Stiperski et al. (2007) has shown that the changes in V do not exert a significant 
influence on U and θ, which remain very close to their steady profiles Us and θs. The ratio of 
the Coriolis term to the buoyancy term in (1) is, for typical katabatic flows, O(10-2); hence, it 
is reasonable to neglect the Coriolis term for the analytical treatment of the simplified 
problem. Then (1) and (3) become weakly decoupled from (2), which becomes a forced 
diffusion equation. The analytic solution for V is thus obtained from Eq. (2), with Us on the 
right-hand side as its forcing: 
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 The above solution holds after time t > T needed for the forcing in (2), via Us, to approach its 

steady state. 
 
The derived solutions, together with the results from Grisogono (2003), lead us to the hypothesis 

that similar behaviour can also be expected in the case of a vertically varying eddy diffusivity. That is, 
the numerical results for U and θ  would approach steady state within T - 1.5T, while V would 
continue to diffuse upwards, only this time with the limitations imposed by the K(z) profile. Thus, V 
would behave as a solution to the 1st Stokes inhomogeneous problem (e.g. Kundu and Cohen, 2002). 

 

3. Solutions for varying eddy diffusivity 

3.1. THE WKB SOLUTIONS 

For K = K(z), analytical solutions can be derived using the WKB method (Grisogono, 1995; Grisogono 
and Oerlemans, 2001a, 2001b). More about the mathematical background of the method can be found 
in Bender and Orszag (1978). Furthermore, its use for pure katabatic flows is justified in Grisogono 
and Oerlemans (2002) and Parmhed et al. (2004).  

We apply the method with a zero-order solution for θ and U. This approach keeps the balance 
between the terms with the largest amplitude in Eq. (9), modified for the varying K. Here, the 
derivatives of K are neglected and only its variations in σ are allowed. Nevertheless, it must be 
emphasized that, for the WKB method to be valid, the K(z) profile must be either constant or gradually 
varying with respect to the vertical scale variations of the analytical solution. The latter means not 
only that K(z) has to be a gradually varying function itself (Grisogono and Oerlemans, 2001a), but also 
that the height of the maximum value of K(z) (hereafter denoted by Kmax) must be above the LLJ 
height. In this paper we use the analytical K(z) profile from Grisogono and Oerlemans (2001a, 2001b), 
and Parmhed et al. (2004):  
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where h is the level where Kmax is reached. Here h can be estimated from the fact that the WKB 
solution for U will always place the LLJ below that calculated via the constant-K solution (Grisogono 
and Oerlemans, 2001a, 2001b). Moreover, the position of the LLJ height in Vf is always higher than in 
Us, and also gradually increases in time, reaching ≈ 100 m (Stiperski et al., 2007). Simultaneously, the 
value of h is limited by the depth of the strongly stable ABL (Grisogono and 0erlemans, 2002). The 
above conditions, together with the conditions imposed by the WKB method, give us a reasonable 
estimate of h = 200 m for the K(z) profile used in the following example (Subsection 3.2). 

Relations between the best choices for Kc and Kmax are discussed in Grisogono and Oerlemans 
(2001a). Here we just adopt the fact that it is reasonable if Kc ≈ 30% of Kmax, as in Eq. (11b). Of 
course, other choices are possible depending on specific cases addressed. Further details on estimating 
Kmax and h can be found in Grisogono and Oerlemans (2002) and Parmhed et al. (2004, 2005). 

As discussed in Section 2, following the scale analysis in Stiperski et al. (2007) we neglect the 
Coriolis term in (1). This enables us to straightforwardly use the zero-order WKB approach for the 
modified flow vector F = (θ, U): 
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Furthermore, we define: 
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which, together with the boundary conditions given in Eqs. (4) and (5), yield the solutions for θ  and 
U: 
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As can be seen from previous studies (Grisogono, 1995; Grisogono and Oerlemans, 2001a, 2001b, 

2002) the WKB solutions are structurally similar to the constant-K case. In this study Ι(z) is evaluated 
numerically, but it may be calculated also analytically, carefully taking into consideration its often 
divergent nature that is successfully overcome by the negative exponential in (12), and then in (16) 
and (17).  

Moreover, the WKB solutions approach the constant-K solutions (6) and (7) as . 
Then, I(z) in (13) becomes , and 

cKzK →)(
zKc

2/1− ( ) 2/zWKBσ  in (16) and (17) becomes phzz /2/ =σ  
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(Eqs. 6 and 7). This yields a reasonable assumption that Vf  may also be considered as the limit value 
of the corresponding WKB solution and implies the expansion of the argument of the error function in 
(10) for the case of variable K(z). That is,  in (10), giving us the solution for V(z, t):  )(2/1 zIzKc →−
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Again, t > T as in (10). The comparison between the analytical and numerical solutions, as well as 

comparison with the constant-K case, is given in the following section. 
 

3.2. COMPARISON WITH THE NUMERICAL AND CONSTANT-K SOLUTIONS 

Following Stiperski et al. (2007), the analytical solutions are verified against the numerical solutions 
of the time-dependent system (1) - (3) obtained using the simple numerical model from Grisogono 
(2003). The numerical and WKB solutions for U and θtot

 = θ  + γz  are compared for a case with 
physical parameters (f, α, γ, Pr, C) = (1.1×10-4 s-1, −4°, 4×10-3 K m-1, 1.1, −8°C), and the prescribed 
K(z) from (11a) and (11b). Here θtot is calculated and plotted without the reference potential 
temperature θ0 (to reword, the constant θ0 is already subtracted from θtot). From Figure 1 it can be seen 
that the numerical solution (dashed) for both U and θtot are in excellent agreement with the steady state 
solutions (16) and (17) for t ≥ T (solid). Such agreement is expected from the results for the constant-K 
case described in Stiperski et al. (2007, see their Figure 2). 

Figure 2 displays both the WKB and constant-K solutions for U and θtot, showing the improvement 
in describing the sharp near-surface gradients in temperature and wind that are often observed (Defant, 
1949; Munro, 1989; Egger, 1990; Oerlemans, 1998; Parmhed et al., 2004). This is also in agreement 
with the analysis of Grisogono and Oerlemans (2001a, 2001b) for the non-rotating model, and yields 
the better estimate of both the LLJ height, and surface heat and momentum fluxes. Yet another 
difference can be seen between UWKB and Us: both profiles have the return flow around z ≈ 200 m of 
similar amplitude, but this layer is thicker for the K(z) case. 

The sharper near-surface gradient and the lower LLJ height are also seen for the cross-slope wind 
component V, when K(z) is employed, Figure 3. There Vnum still diffuses upwards but, as expected, its 
propagation is now limited to the height where the values of K(z) approach zero (z ≈ 800 m, Figure 2). 
This leads us to the conclusion that the hypothesis of V influencing the polar vortex after sufficient 
time imposed by Stiperski et al. (2007) should be more relaxed in this more realistic case. There is 
another significant difference, i.e. the presence of a secondary bulge in V above the height of Kmax at z 
≈ 400 or 500 m. As the integration time increases, this bulge strengthens and expands with height, 
nevertheless obeying the limitations imposed by K(z). The bulge in V(z, t) occurs because of two 
opposing effects. Both V(z, t), namely Vnum and VWKB, try to diffuse upwards as in the 1st Stokes 
problem, which is nicely emulated in Stiperski et al. (2007). However, at progressively higher levels 
there is less and less K(z) for mixing the V component upward. Hence, V(z, t) finds less and less 
medium to diffuse through and starts to accumulate below K(z)  0 level (Figure 3, black solid line). 
On the contrary, deep and non-decaying K supports the vertical diffusion of V(z, t), (Figure 3, grey 
solid line). 

→

The overall behaviour of Vnum is very well described with the new approximate WKB solution VWKB 
from (18), only slightly overestimating the maximum amplitude. Similar behaviour of the analytical 
solution Vf has also been observed for the constant-K case in Stiperski et al. (2007). The detailed 
calculation presented here for V(z, t) also explains the behaviour of V component in Denby (1999), 
which was not commented there (see his Figure 2e and 5). 

Additional remarks on how to estimate the input parameters for this Ekman–Prandtl model type 
with K(z) can be found in Parmhed et al. (2004, 2005). The new analytical solutions (U, V, θ)WKB, (16), 
(17) and (18) are not named “asymptotic”, which usually holds for the WKB solutions, only because 
we weakly decoupled (2) so that VWKB does not feed back to the original system (1) – (3). The 
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numerical result shows, as also in Stiperski et al. (2007), that the V effect on the katabatic dynamics is 
negligible. However, the induced V(z, t) affects the wind direction and the horizontal momentum flux. 
 

4. Conclusions 

A better understanding of katabatic flows is necessary for better treatment and parameterization of the 
coupling between the atmosphere and cool, inclined surfaces (e.g. King et al., 2001; Weng and Taylor, 
2003). The rotating Prandtl model (Stiperski et al., 2007), although providing the analytical tool for 
analyzing this coupling, does not hold for the real atmosphere due to the assumption of constant eddy 
diffusivity. In this work an attempt is made towards a more realistic description of the long-lived 
katabatic strongly stable ABL through the approach of Grisogono and Oerlemans (2001a, 2001b). 
There, the approximate analytical solutions for the Prandtl model with gradually varying K(z), but 
without rotation, were obtained using the WKB method. The obtained solutions were verified against 
the results from the numerical model (Grisogono, 2003), and independently against a dataset from 
Breidamerkurjokull, Iceland (Parmhed et al., 2004). Here, the analytical and numerical solutions for 
(U, V, θ) depending on (z, t) in the rotating katabatic flow are presented. 

As expected, the overall change of the flow vector (U, V, θ) is structurally similar to the constant-K 
case (Stiperski et al., 2007). Both U and θ  reach their steady-state profiles after the typical time scale 
for simple katabatic flows T ≈ 2π/(N sin(α)), and V still diffuses upwards in time without a well-
defined time scale. Contrary to the constant-K case, the upward propagation of V(z, t) is now limited 
by the vertically decaying values of K(z) above its maximum. As the result, the elevated bulge in the 
V(z, t) profile is observed above the weak return flow in U. This feature indicates the trapping of the V 
momentum at the height where K(z) approaches a zero value, whereas for the constant-K values the V 
momentum continuously propagates under diffusion in the vertical (Stiperski et al., 2007). For 
example, if there was pre-existing elevated turbulence, e.g. residual turbulent layer(s), then the 
katabatic effect could, in principle, still influence the polar vortex after sufficiently long duration of 
the flow during the polar night. 

This study shows that the WKB method of zero-order may be successfully applied to find the 
approximate analytical solutions for all the model components. The new WKB solution is relatively 
simple to derive and calculate either by analytical or numerical evaluation of the integral expression 
(13). The proposed analytical solutions (16), (17) and (18) can be used for studying katabatic flows 
over long slopes. Together with the introduction of the varying eddy diffusivity profile, the proposed 
solutions give a more realistic description of sloped surface-flux parameterizations in climate models 
and data analysis. 
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Figure 1. Numerical  and Utot
numθ num (dashed) and analytical WKB  and Utot

WKBθ WKB (solid), Eqs. (16) and (17), solutions for the 
Prandtl model, at (a) t = T and (b) t = 10T, T = 2π/(N sin(α)) ≈ 2.1 h. Here K(z) is from (11a) and (11b), with Kmax = 3 m2 s-1 
at h = 200 m; other parameters are (f, α, γ, Pr, C) = (1.1×10-4 s-1, −4°, 4×10-3 K m-1, 1.1, −8°C). The numerical model top is at 
2000 m. 

 

 
 
Figure 2. The prescribed K(z) profile (dot-dashed) and analytic solutions of the rotating Prandtl model for the case of varying 
(solid) and constant K (dashed). Here K(z) is from Eqs. (11a) and (11b), Kc = 1 m2 s-1, and  and Utot

sθ s from (6) and (7). The 
rest as in Figure 1. 
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Figure 3. The analytical (solid) and numerical (dashed) solutions for V at (a) t = 2T, (b) t = 10T, (c) t = 20T and (d) t = 50T. 
The WKB solution VWKB is in (18); the constant K solution, Vf, is given in (10). The rest as in Figure 1. 
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